Is there a need for fuzzy logic ? q

نویسنده

  • Lotfi A. Zadeh
چکیده

‘‘Is there a need for fuzzy logic?” is an issue which is associated with a long history of spirited discussions and debate. There are many misconceptions about fuzzy logic. Fuzzy logic is not fuzzy. Basically, fuzzy logic is a precise logic of imprecision and approximate reasoning. More specifically, fuzzy logic may be viewed as an attempt at formalization/mechanization of two remarkable human capabilities. First, the capability to converse, reason and make rational decisions in an environment of imprecision, uncertainty, incompleteness of information, conflicting information, partiality of truth and partiality of possibility – in short, in an environment of imperfect information. And second, the capability to perform a wide variety of physical and mental tasks without any measurements and any computations [L.A. Zadeh, From computing with numbers to computing with words – from manipulation of measurements to manipulation of perceptions, IEEE Transactions on Circuits and Systems 45 (1999) 105–119; L.A. Zadeh, A new direction in AI – toward a computational theory of perceptions, AI Magazine 22 (1) (2001) 73–84]. In fact, one of the principal contributions of fuzzy logic – a contribution which is widely unrecognized – is its high power of precisiation. Fuzzy logic is much more than a logical system. It has many facets. The principal facets are: logical, fuzzy-set-theoretic, epistemic and relational. Most of the practical applications of fuzzy logic are associated with its relational facet. In this paper, fuzzy logic is viewed in a nonstandard perspective. In this perspective, the cornerstones of fuzzy logic – and its principal distinguishing features – are: graduation, granulation, precisiation and the concept of a generalized constraint. A concept which has a position of centrality in the nontraditional view of fuzzy logic is that of precisiation. Informally, precisiation is an operation which transforms an object, p, into an object, p*, which in some specified sense is defined more precisely than p. The object of precisiation and the result of precisiation are referred to as precisiend and precisiand, respectively. In fuzzy logic, a differentiation is made between two meanings of precision – precision of value, v-precision, and precision of meaning, m-precision. Furthermore, in the case of m-precisiation a differentiation is made between mh-precisiation, which is human-oriented (nonmathematical), and mm-precisiation, which is machine-oriented (mathematical). A dictionary definition is a form of mh-precisiation, with the definiens and definiendum playing the roles of precisiend and precisiand, respectively. Cointension is a qualitative measure of the proximity of meanings of the precisiend and precisiand. A precisiand is cointensive if its meaning is close to the meaning of the precisiend. A concept which plays a key role in the nontraditional view of fuzzy logic is that of a generalized constraint. If X is a variable then a generalized constraint on X, GC(X), is expressed as X isr R, where R is the constraining relation and r is an $ see front matter 2008 Elsevier Inc. All rights reserved. /j.ins.2008.02.012 h supported in part by ONR N00014-02-1-0294, BT Grant CT1080028046, Omron Grant, Tekes Grant, Chevron Texaco the BISC Program of UC Berkeley. 1 510 642 4959; fax: +1 510 642 1712. address: [email protected] Fuzzy Logic Community. 2752 L.A. Zadeh / Information Sciences 178 (2008) 2751–2779 indexical variable which defines the modality of the constraint, that is, its semantics. The primary constraints are: possibilistic, (r = blank), probabilistic (r = p) and veristic (r = v). The standard constraints are: bivalent possibilistic, probabilistic and bivalent veristic. In large measure, science is based on standard constraints. Generalized constraints may be combined, qualified, projected, propagated and counterpropagated. The set of all generalized constraints, together with the rules which govern generation of generalized constraints, is referred to as the generalized constraint language, GCL. The standard constraint language, SCL, is a subset of GCL. In fuzzy logic, propositions, predicates and other semantic entities are precisiated through translation into GCL. Equivalently, a semantic entity, p, may be precisiated by representing its meaning as a generalized constraint. By construction, fuzzy logic has a much higher level of generality than bivalent logic. It is the generality of fuzzy logic that underlies much of what fuzzy logic has to offer. Among the important contributions of fuzzy logic are the following: 1. FL-generalization. Any bivalent-logic-based theory, T, may be FL-generalized, and hence upgraded, through addition to T of concepts and techniques drawn from fuzzy logic. Examples: fuzzy control, fuzzy linear programming, fuzzy probability theory and fuzzy topology. 2. Linguistic variables and fuzzy if–then rules. The formalism of linguistic variables and fuzzy if–then rules is, in effect, a powerful modeling language which is widely used in applications of fuzzy logic. Basically, the formalism serves as a means of summarization and information compression through the use of granulation. 3. Cointensive precisiation. Fuzzy logic has a high power of cointensive precisiation. This power is needed for a formulation of cointensive definitions of scientific concepts and cointensive formalization of human-centric fields such as economics, linguistics, law, conflict resolution, psychology and medicine. 4. NL-Computation (computing with words). Fuzzy logic serves as a basis for NL-Computation, that is, computation with information described in natural language. NL-Computation is of direct relevance to mechanization of natural language understanding and computation with imprecise probabilities. More generally, NL-Computation is needed for dealing with second-order uncertainty, that is, uncertainty about uncertainty, or uncertainty for short. In summary, progression from bivalent logic to fuzzy logic is a significant positive step in the evolution of science. In large measure, the real-world is a fuzzy world. To deal with fuzzy reality what is needed is fuzzy logic. In coming years, fuzzy logic is likely to grow in visibility, importance and acceptance. 2008 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Fuzzy Logic to the Estimation of Environmental Degradation Trends in Iran

During recent years several attempts have been made to incorporate environmental and natural resources degradation into national accounts. GNP as measured by the traditional system of national accounts does not consider environmental degradation caused by inefficient exploitation of natural resources. While the complete omission of environmental impacts is not possible, there could be an optima...

متن کامل

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking

A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

ON ($epsilon, epsilon vee q$)-FUZZY IDEALS OF BCI-ALGEBRAS

The aim of this paper is to introduce the notions of ($epsilon, epsilon vee q$)-fuzzy p-ideals, ($epsilon, epsilon vee q$)-fuzzy q-ideals and ($epsilon, epsilon vee q$)-fuzzy a-ideals in BCIalgebras and to investigate some of their properties. Several characterizationtheorems for these generalized fuzzy ideals are proved and the relationshipamong these generalized fuzzy ideals of BCI-algebras i...

متن کامل

Development of a Spatial Model for Locating Optimal Areas of Sustainable Physical Development Using Fuzzy Logic (Case Study: Hamadan City)

Today, physical development and population growth in Iranian cities, like other developing countries, is on the rise. One of the main problems in the urban area is the lack of attention to the influential parameters in the sustainable urban development.  Various factors, such as natural phenomena, play a role in the urban development, and the effective parameters must be considered for locatin...

متن کامل

Systematic literature review of fuzzy logic based text summarization

Information Overloadrq  is not a new term but with the massive development in technology which enables anytime, anywhere, easy and unlimited access; participation & publishing of information has consequently escalated its impact. Assisting userslq    informational searches with reduced reading surfing time by extracting and evaluating accurate, authentic & relevant information are the primary c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008